Yang, Yunpeng

Pollen-based reconstructions of vegetation and climate changes during the late Holocene in the southern Altai Mountains/ - Sage, 2019. - Vol 29, issue 9, 2019 : (1450-1458 p.).

We here preset a result of high-resolution pollen data of a lacustrine-peat sediment core from Yushenkule (YSKL) Peat, southern Altai Mountains, northwestern China. We aim to reconstruct the palaeovegetation and palaeoclimate variations in the southern Altai Mountains and further evaluate the role of autogenic process of the raised bog itself in driving the local vegetation dynamics. The pollen data of YSKL core-2 show two major vegetation stages in YSKL Peat area and the surrounding areas during the data-covering period. During the stage lasting from ~4870 to ~2550 cal. yr BP, regional vegetation was dominated by desert steppe and local vegetation in YSKL Peat was characterized by Artemisia-dominated mountain steppe. During the stage lasting from ~2550 to ~700 cal. yr BP, regional vegetation was characterized by Artemisia-dominated steppe and local vegetation in YSKL Peat was characterized by Cyperaceae-dominated wetland herbs. The Ar/Am (Artemisia/Amaranthaceae) ratio-indicated moisture increasing trend of southern Altai Mountains can attribute to the combined effects of decreased temperature and increased precipitation. The lithologic transition from lake to peat of YSKL core-2 can be explained by invoking the variations in the areal extent of ice covers in the Altai Mountains


Altai Mountains,
climate change,
late Holocene,
moisture change,
pollen analysis