Development and application of the network weight matrix to predict traffic flow for congested and uncongested conditions

By: Contributor(s): Material type: ArticleArticlePublication details: Sage, 2019.Description: Vol 46, Issue 9, 2019 (1684-1705 p.)Subject(s): Online resources: In: Environment and Planning B: Urban Analytics and City ScienceSummary: To capture network dependence between traffic links, we introduce two distinct network weight matrices (Wj,i), which replace spatial weight matrices used in traffic forecasting methods. The first stands on the notion of betweenness centrality and link vulnerability in traffic networks. To derive this matrix, we use an unweighted betweenness method and assume all traffic flow is assigned to the shortest path. The other relies on flow rate change in traffic links. For forming this matrix, we use the flow information of traffic links and employ user equilibrium assignment and the method of successive averages algorithm to solve the network. The components of the network weight matrices are a function not simply of adjacency, but of network topology, network structure, and demand configuration. We test and compare the network weight matrices in different traffic conditions using the Nguyen–Dupuis network. The results lead to a conclusion that the network weight matrices operate better than traditional spatial weight matrices. Comparing the unweighted and flow-weighted network weight matrices, we also reveal that the assigned flow network weight matrices perform two times better than a betweenness network weight matrix, particularly in congested traffic conditions.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Vol info Status Date due Barcode Item holds
E-Journal E-Journal Library, SPAB Reference Collection vol. 46, Issue 1-9, 2019 Available
Total holds: 0

To capture network dependence between traffic links, we introduce two distinct network weight matrices (Wj,i), which replace spatial weight matrices used in traffic forecasting methods. The first stands on the notion of betweenness centrality and link vulnerability in traffic networks. To derive this matrix, we use an unweighted betweenness method and assume all traffic flow is assigned to the shortest path. The other relies on flow rate change in traffic links. For forming this matrix, we use the flow information of traffic links and employ user equilibrium assignment and the method of successive averages algorithm to solve the network. The components of the network weight matrices are a function not simply of adjacency, but of network topology, network structure, and demand configuration. We test and compare the network weight matrices in different traffic conditions using the Nguyen–Dupuis network. The results lead to a conclusion that the network weight matrices operate better than traditional spatial weight matrices. Comparing the unweighted and flow-weighted network weight matrices, we also reveal that the assigned flow network weight matrices perform two times better than a betweenness network weight matrix, particularly in congested traffic conditions.

There are no comments on this title.

to post a comment.

Library, SPA Bhopal, Neelbad Road, Bhauri, Bhopal By-pass, Bhopal - 462 030 (India)
Ph No.: +91 - 755 - 2526805 | E-mail: library@spabhopal.ac.in

OPAC best viewed in Mozilla Browser in 1366X768 Resolution.
Free counter