Why topology matters in predicting human activities

By: Contributor(s): Material type: ArticleArticlePublication details: Sage 2019.Description: Vol 46, Issue 7, 2019,(1297-1313 p.)Subject(s): Online resources: In: Environment and Planning B: Urban Analytics and City ScienceSummary: Geographic space is better understood through the topological relationship of the underlying streets (note: entire streets rather than street segments), which enables us to see scaling or fractal or living structure of far more less-connected streets than well-connected ones. It is this underlying scaling structure that makes human activities predictable, albeit in the sense of collective rather than individual human moving behavior. This topological analysis has not yet received its deserved attention in the literature, as many researchers continue to rely on segment analysis for predicting human activities. The segment analysis-based methods are essentially geometric, with a focus on geometric details of locations, lengths, and directions, and are unable to reveal the scaling property, which means they cannot be used for the prediction of human activities. We conducted a series of case studies using London streets and tweet location data, based on related concepts such as natural streets, and natural street segments (or street segments for short), axial lines, and axial line segments (or line segments for short). We found that natural streets are the best representation in terms of human activities or traffic prediction, followed by axial lines, and that neither street segments nor line segments bear a good correlation between network parameters and tweet locations. These findings point to the fact that the reason why space syntax based on axial lines, or the kind of topological analysis in general, works has little to do with individual human travel behavior or ways that humans conceptualize distances or spaces. Instead, it is the underlying scaling hierarchy of streets – numerous least-connected, a very few most-connected, and some in between the least- and most-connected – that makes human activities predictable.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Vol info Status Date due Barcode Item holds
E-Journal E-Journal Library, SPAB Reference Collection vol. 46, Issue 1-9, 2019 Available
Total holds: 0

Geographic space is better understood through the topological relationship of the underlying streets (note: entire streets rather than street segments), which enables us to see scaling or fractal or living structure of far more less-connected streets than well-connected ones. It is this underlying scaling structure that makes human activities predictable, albeit in the sense of collective rather than individual human moving behavior. This topological analysis has not yet received its deserved attention in the literature, as many researchers continue to rely on segment analysis for predicting human activities. The segment analysis-based methods are essentially geometric, with a focus on geometric details of locations, lengths, and directions, and are unable to reveal the scaling property, which means they cannot be used for the prediction of human activities. We conducted a series of case studies using London streets and tweet location data, based on related concepts such as natural streets, and natural street segments (or street segments for short), axial lines, and axial line segments (or line segments for short). We found that natural streets are the best representation in terms of human activities or traffic prediction, followed by axial lines, and that neither street segments nor line segments bear a good correlation between network parameters and tweet locations. These findings point to the fact that the reason why space syntax based on axial lines, or the kind of topological analysis in general, works has little to do with individual human travel behavior or ways that humans conceptualize distances or spaces. Instead, it is the underlying scaling hierarchy of streets – numerous least-connected, a very few most-connected, and some in between the least- and most-connected – that makes human activities predictable.

There are no comments on this title.

to post a comment.

Library, SPA Bhopal, Neelbad Road, Bhauri, Bhopal By-pass, Bhopal - 462 030 (India)
Ph No.: +91 - 755 - 2526805 | E-mail: library@spabhopal.ac.in

OPAC best viewed in Mozilla Browser in 1366X768 Resolution.
Free counter